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BENEFITS OF SWEPT AND LEANED STATORS
FOR FAN NOISE REDUCTION

Richard P. Woodward, David M. Elliott,
Christopher E. Hughes, and Jeffrey J. Berton

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

An advanced high bypass ratio fan model was tested
in the NASA Lewis Research Center 9×15-Foot Low
Speed Wind Tunnel. The primary focus of this test was to
quantify the acoustic benefits and aerodynamic
performance of sweep and lean in stator vane design.
Three stator sets were used for this test series. A
conventional radial stator was tested at two rotor-stator
axial spacings. Additional stator sets incorporating sweep
+ lean, and sweep only were also tested. The hub axial
location for the swept + lean, and sweep only stators
corresponded to the location of the radial stator at the
upstream rotor-stator spacing, while the tip axial location
of these modified stators corresponded to the radial stator
axial position at the downstream position. The acoustic
results show significant reductions in both rotor-stator
interaction noise and broadband noise beyond what could
be achieved through increased axial spacing of the
conventional, radial stator. Theoretical application of these
results to acoustically quantify a fictitious 2-engine aircraft
and flight path suggested that about 3 EPNdB could be
achieved through incorporation of these modified stators.
This reduction would represent a significant portion of the
6 EPNdB noise goal of the current NASA Advanced
Subsonic Technology (AST) initiative relative to that of
1992 technology levels. A secondary result of this fan test
was to demonstrate the ability of an acoustic barrier wall
to block aft-radiated fan noise in the wind tunnel, thus
revealing the acoustic structure of the residual inlet-
radiated noise. This technology should prove valuable
toward better understanding inlet liner design, or wherever
it is desirable to eliminate aft-radiated noise from the fan
acoustic signature.

Introduction

A major source of aircraft engine noise comes from
interaction of the rotor viscous wake with the exit guide
vanes, or stators. The most prominent component of this
interaction noise are tones at multiples of the rotor blade
passage frequency, although there also exists a broadband
component of this rotor-stator noise. Traditional methods
of reducing this interaction noise have been to select
blade/vane ratios to satisfy the cut off criterion for
propagation of the fundamental rotor tone1 and increased
axial spacing between the rotor and stator.2 Increased
rotor-stator axial spacing may somewhat degrade the fan
aerodynamic performance and increase the overall engine
weight.

The current Advanced Subsonic Technology (AST)
noise initiative calls for a 6 EPNdB (Effective Perceived
Noise) engine noise reduction relative to 1992 technology
levels to be achieved by 1999. This work calls for a
comprehensive understanding of engine noise generation
mechanisms accompanied by analytic and experimental
validations.

Stator vane lean and/or sweep have been suggested as
a mechanism to reduce the severity of the rotor wake
interaction with the stator vane. Vane sweep is the axial
displacement of the vane with radius such that the tip
region is further downstream than the hub.
Correspondingly, lean is a circumferential displacement
of the vane stacking line relative to the radial direction.
Both of these stator modifications have been proposed as
a means to reduce the stator response to the rotor downwash,
thereby reducing the rotor/stator acoustic response. Kazen3

demonstrated rotor/stator interaction tone reductions
associated with a stator leaned 30° in the direction of fan
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rotation. Noise reductions in the 2BPF tone from 1.5 to
3.5 dB with the leaned stator were observed in this study.

Analytical studies4 have suggested that both stator
lean and sweep, if properly applied, may significantly
reduce rotor/stator interaction tone noise. Optimal stator
lean and sweep offers the possibility of reducing the
overall engine weight through decreased axial rotor-stator
spacing or achieving additional tone noise reduction for a
particular rotor-stator spacing.

An advanced high bypass subsonic fan model
incorporating stator sweep and lean was designed and
built by the Allison Engine Company under contract to
NASA Lewis Research Center (Contract NAS3–25950).
The Allison fan was tested in the NASA Lewis 9- by
15-Foot Low Speed Wind Tunnel5-7 (9×15 LSWT), which
is located in the low-speed return leg of the 8- by 6-Foot
Supersonic Wind Tunnel (8×6 SWT). These fan tests were
conducted at a freestream Mach Number of 0.10. The test
section walls are acoustically treated to provide anechoic
conditions down to a frequency of 250 Hz, which is lower
than the range of test fan acoustic tones.

The emphasis of this fan test was to evaluate the
aeroacoustic performance of the swept + leaned, and
swept only stator relative to that of a baseline radial stator.
All stators had the same vane number and were designed
for equivalent aerodynamic performance. Acoustic data
are presented in terms of sideline directivities and spectra.
These data were also used to generate flyover and sideline
EPNL estimates for a fictitious two-engine aircraft and
flight path to give an estimate of the EPNL benefit
associated with these stator modifications.

Description of Fan Test
Research Fan.  An advanced high bypass subsonic fan

model incorporating stator lean and sweep was designed
and built by the Allison Engine Company under contract
to NASA Lewis.7 Figure 1 is a photograph of the fan
installed in the NASA Lewis 9×15 LSWT. The fan was
tested at a freestream Mach Number of 0.10 in the test
section, which is sufficient to achieve acoustic flight
effect8 and provides acoustic data representative of takeoff/
approach operation. All data were taken at 0o fan axis
angle of attack.

The Allison fan was driven by the NASA Lewis Ultra
High Bypass (UHB) drive rig. The UHB drive rig was
powered by a high pressure air turbine drive with the drive
air and instrumentation supplied through the support strut,
shown in Fig. 1. The drive turbine exhaust air was ducted
downstream through an acoustically treaded diffuser and
exited the end of the treated test section. There was little
indication of acoustic contamination of the aft fan data
from the turbine exhaust.

Table I shows design characteristics of the Allison
Fan. The 18 blade rotor had a diameter of 55.9 cm (22 in.).

Three research stator sets were fabricated – a conventional
radial stator and modified stators with sweep + lean, and
sweep only. (A leaned only stator set would have been
desirable, but was eliminated from the contract due to cost
considerations.) All stator sets had 42 vanes and were
designed for equivalent fan stage aerodynamic
performance. The fan stage did not have a core flow
simulator. The baseline stator configuration was with the
radial stator at the closer axial rotor-stator spacing (Fig. 2).
The radial stator was also tested at a larger rotor-stator
axial spacing. The swept + leaned, and swept only stators
were designed such that the hub was located at the same
axial rotor-stator spacing as the baseline stator, and the tip
was located at an axial location corresponding to the radial
stator at the larger axial spacing, (Fig. 3). These stators
were designed with 30° of sweep and 30° of lean. The
swept + leaned stator was leaned in the direction of rotor
rotation.

Figures 4 to 7 are photographs of the partially
assembled fan stage. Figure 4 is a photograph of the stage
showing the rotor and the swept and leaned stator. Figure 5
shows the rotor and the swept-only stator. Figure 6 is a
downstream view of the swept and leaned stator. Figure 7
is a downstream view of the swept and leaned stator seen
through the rotor.

Anechoic Wind Tunnel and Acoustic Instrumentation.
The NASA Lewis 9×15 LSWT is located in the low speed
return leg of the 8×6 SWT (Fig. 8). The tunnel test section
walls, floor and ceiling had acoustic treatment to produce
an anechoic test environment. Figure 9 is a sketch of the
test fan installed in the 9×15 LSWT. Sideline acoustic data
were acquired with a computer-controlled translating
microphone probe (also seen in the photograph of Fig. 1)
and with three aft microphone assemblies mounted to the
tunnel floor. The translating microphone probe acquired
data at 48 sideline geometric angles from 27.2 to 134.6°
relative to the fan rotor plane. The translating probe
traverse was at 224 cm (88 in.) from the fan rotational axis
(four fan diameters). A wall microphone assembly placed
a reference microphone adjacent to the translating probe
home position (134.6°, maximum aft travel). Three fixed
microphone assemblies were mounted to the tunnel flow
at this same axial position to acquire aft acoustic data at
geometric angles of 140, 150, and 160°. The acoustic data
were acquired through a digital computer system and
stored for post-run analysis.

Results and Discussion

Aerodynamic Performance
The three fan stator sets were designed for equivalent

aerodynamic performance. Figures 10 and 11 present a
brief overview of the fan performance with the three stator
sets. The baseline radial stator showed the highest corrected
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weight flow as a function of corrected fan speed, with the
swept + leaned stator showing the lowest weight flow
value (Fig. 10). However, the weight flow differences
between stator sets at the same fan speed is relatively
small, on the order of 1 to 1.5 percent.

Figure 11 shows the percent system loss as a function
of percent corrected fan speed for the fan with swept +
leaned, and swept only stators. The results shown are
normalized to the baseline stator configuration
performance. The system losses with the swept + leaned
stator were 2.5 to three percent greater than losses with the
swept only stator. These losses are thought to be associated
with the high pressure and velocities due to the
supercharged nature of the flow in the hub region without
a core simulator. These flow conditions appear to be
causing large separated regions on the stators that increase
system losses. In addition, large viscous wall losses are
associated with the corner flow at the stator hub and tip for
the swept + leaned stator. A somewhat different design
methodology was employed for the swept only stator,
which was partially optimized using area ruling at the tip
region to help relieve the high velocity region there caused
by the flow stacking up in the outboard region of the stator.
Consequently, the swept only stator showed less system
losses.

These limited aerodynamic results are included to
better understand the associated acoustic performance of
the fan with the non-radial stators. A point for consideration
is that the swept + leaned and swept only stator designs
were not optimized for the fan or design point performance.
These were technology demonstrator, proof-of-concept
designs, and the aerodynamic performance losses
associated with them are not representative of the
performance potential for this technology. Encouragingly,
acoustic benefits associated with the swept + leaned stator
are in spite of the somewhat higher system losses associated
with this stator. A swept + leaned stator with lower system
losses may show additional noise reduction relative to the
results presented in this report.

Acoustic Performance
All of the fan acoustic data were acquired at a tunnel

test section velocity of 0.10 Mach. Sideline data are
presented in terms of emission angles. The emission
angles are related to the geometric, or observed angles by
the relationship:

Θem = Θgeom – sin–1 (Mo sin Θgeom)

where Θem and Θgeom are, respectively, the emission and
observed sideline angles, and Mo is the test section Mach
number. The observed angles for the sideline translating
microphone probe are then 25 to 130º, and the three fixed
microphones measure aft observed angles of 136, 147, and

158º. This angular range was sufficient to define the
sideline noise profile for this aft-dominated fan for
subsequent EPNL calculations.

Digital acoustic data were processed as constant
bandwidth spectra. Spectra were acquired and averaged at
each translating probe or fixed mic position with 6 and
59 Hz bandwidths. These constant bandwidth spectra
were electronically merged and used to generate 1/3
octave spectra. The results presented herein are in terms of
both constant bandwidth and 1/3 octave spectra.

Swept + leaned, and swept only stators were expected
to reduce rotor-stator interaction tones by relieving the
severity of the rotor wake interaction with the stator vanes.
An additional observed benefit was a reduction in fan
broadband noise. Two techniques were employed to
separate the interaction tone and broadband components
of the noise. A software technique was used with the
digital data reduction to produce constant bandwidth, and
consequently, 1/3 octave spectra with minimal interaction
tone content. This technique investigated the spectra at
interaction tone frequencies and eliminated tones which
were 6 dB or more above adjacent spectral levels.
Broadband levels at the first four interaction tone
frequencies were also deduced by manually inspecting
selected constant bandwidth spectral arrays.

Effective Perceived Noise Levels. The effective
perceived noise level (EPNL) provides a subjective
measure of the aircraft flyover and sideline noise levels.
This value is derived from the flyover or sideline sound
pressure level profiles and is a function of frequency,
duration, and tone content.

Effective perceived noise levels were calculated for a
fictitious 2-engine aircraft and flight profile based on the
Allison fan model acoustic results. A 3.5 scaling factor
was assumed, and calculations were made for a 0.25 Mach
flight speed. EPNL calculations were made for the full
1/3 octave spectra, and for representative broadband noise
using the 1/3 octave spectra with the interactions tones
electronically removed. FAR 36 Stage 3 sideline EPNL
calculations are for an observer on a 450 m (1476 ft)
sideline. EPNLs were evaluated every 30.5 m (100 ft)
along this line to ensure that the sideline noise reported
was indeed the maximum level. FAR36 Stage 3 cutback
EPNL calculations are for an observer 6500 m (21325 ft)
from brake release in line with the runway.

Figure 12 shows the aircraft EPNL on the 450 m
(1476 ft) sideline. Although the throttle setting used at
takeoff would be at or near the fan design speed, the
sideline noise is evaluated for the range of speeds
investigated for illustrative purposes. There is about a
1.5 EPNdB decrease associated with moving the radial
stator from the forward position to the aft position at all fan
speeds except 110 percent of design, where the change in
noise level is negligible. However, the addition of sweep
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+ lean, or sweep only results in about a 3 EPNdB reduction
from noise levels relative to that for the forward radial
stator at fan speeds up to about 75 percent of design. The
sweep only stator maintains this 3 EPNdb reduction relative
to baseline in the mid speed range of 75 to 95 percent
design speed. The swept + leaned stator showed the most
noise reduction at design and above fan speeds. Similar
results are seen for the flyover EPNL calculations of
Fig. 13. The use of a range of fan speeds is more applicable
for flyover EPNL, since a throttle cutback is often used in
that segment. The analytical EPNL predictions for sideline
and flyover observers differ due to geometric inputs to the
extra ground attenuation and ground reflection models.
These differences, however, do not significantly affect the
trends with respect to fan speed. Thus, although the
magnitudes of the sideline and flyover EPNLs are of
course different, the trends are nearly identical.

The relatively poor performance of the swept + leaned
stator at fan speeds near 90 percent design may be explained
by the relatively lower aerodynamic performance of that
stator (Fig. 11). System losses associated with the swept +
leaned stator are thought to arise from less than optimal
flow near the hub and tip regions. It is quite possible that
refinements in the aerodynamic design of the swept +
leaned stator would result in superior performance for this
concept throughout the fan speed range.

The theoretical study of Ref. 4 concludes that sweep
should be most beneficial at takeoff conditions, while lean
should be most beneficial at approach conditions. This
reference does conclude that combining sweep and lean
should be complementary toward overall noise reduction.
The results of Figs. 12 and 13 are only marginally supportive
of this prediction. It would appear from the data that sweep
alone, rather than sweep + lean, achieved essentially all of
the noise reduction at the lower fan speeds. At the higher
fan speeds additional noise reduction was achieved with
sweep + lean beyond what was observed by sweep only.
However, it is clear from these figures that incorporation
of stator sweep + lean results in significant noise reductions
throughout the fan operating range relative to what could
be achieved through simply increasing the axial spacing of
the radial stator.

Figures 14 and 15 present corresponding broadband
results for the fictitious 2-engine aircraft based on the
acoustic data with the rotor-stator interaction tones
electronically removed. This computer tone removal
technique only removed tones which were 5 dB or more
above the adjacent broadband, and as such, may not fully
represent the spectral broadband levels. The overall pattern
of the data is similar to what was generated from the
inclusive spectra (Figs. 12 and 13), although the noise
reductions are somewhat less. In particular, noise reductions
associated with increasing the axial spacing of the radial
stator are only seen at fan speeds below 85 percent of

design. Reference 2 notes that experimental broadband
noise levels showed little change with rotor-stator spacing
(for a radial stator). This may be another indication that
there is some tonal contamination in the lower speed
results of Figs. 14 and 15.

Sound Pressure Level Directivities. Sideline sound
pressure level (SPL) directivities provide a useful tool for
evaluating acoustic differences associated with changes
in the stator configuration. These directivities were
achieved by combining results from the traverse
microphone and the three aft fixed microphones, resulting
in 224 cm (88 in.) sideline directivities for 25 to 158o

emission angles relative to the fan upstream axis and
centered on the fan rotor plane. These results are for
constant bandwidth (59 Hz) spectra.

Figure 16 shows representative SPL directivities for
the four test configurations. These results are for the fan
operating at 50 percent of corrected design speed. These
data are for the 2BPF tone, which falls within the 3150 Hz
1/3 octave band. Advanced high bypass ratio fans, such as
that reported herein, tend to have aft-dominated
directivities. The results of figure 16 clearly show that there
is a significant noise reduction associated with increased
radial stator spacing, and additional noise benefits to be
realized with a swept + leaned, and swept only stator.

The noise reduction trends shown in Fig. 16, are more
easily understood in terms of changes in noise level
relative to that observed for the baseline radial stator in the
upstream position. The sound pressure level (SPL)
directivities for the four stator configurations will now be
explored in this manner at four representative fan speeds.
Constant bandwidth (59 Hz) spectra were used for this
analysis to facilitate separation of the rotor-stator interaction
tone from adjacent broadband noise. The following test
conditions will be reported:

Percent corrected Corrected rotor tangential Tip Relative Mach

fan speed  tip speed

50 (approach) 152 m/s (500 ft/s) 0.507

84 (takeoff) 256 m/s (840 ft/s) 0.900

100 (sideline) 305 m/s (1000 ft/s) 1.080

110 335 m/s (1100 ft/s) 1.187

Results for each test speed will be presented in terms
of representative spectra at a 126º emission angle followed
with directivities showing the tone and broadband
reductions relative to noise levels observed for the baseline
radial stator in the forward axial position. The broadband
levels at rotor-stator interaction frequencies were manually
extracted through inspection of the individual noise spectra
and should provide a reasonably good representation of
these levels.

Figure 17 compares spectra acquired at 126º emission
angle along the 224 cm (88 in.) sideline for the fan
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operating at 50 percent design speed. The fundamental
rotor-stator interaction tone (BPF) is cut-off and essentially
not present in the spectra. Strong 2 and 3BPF tones are
evident for the radial stator in the upstream position. These
overtones are essentially attenuated either by moving the
radial stator to the aft position or employing sweep and/or
lean. However, there is clear indication that additional
broadband noise – on the order of 4 dB – is removed by the
modified stator sets.

Figures 18 and 19 show, respectively, the directivity
effects on the 2 and 3BPF fan overtones. SPL reductions
in the tone and broadband levels are plotted against the
sideline emission angle. Positive noise levels represent
noise reductions relative to what was observed for the
baseline configuration with the radial stator in the upstream
position. Tone reductions for the 2BPF tone (Fig. 18) are
greatest at aft angles, showing 12 dB reduction associated
with moving the radial stator to the downstream location.
Noise reductions of 15 and 19 dB were associated,
respectively, with the swept only, and swept + leaned stator.

There were also broadband noise reductions associated
with the swept + leaned, and swept only stators, showing
up to 4 dB broadband noise reduction. Moving the radial
stator to the downstream location produced little to no
reduction in broadband noise. This result is consistent
with that reported in the stator spacing study of Ref. 2,
which likewise noted little change in broadband noise
level with (radial) stator spacing.

There has been some concern regarding the periodic
nature of the tonal directivity data taken in the 9×15 LSWT.
While it is possible that this behavior arises from tunnel
wall reflections, it is much more likely that the data
accurately shows a real interference pattern between aft
and forward radiated noise at a particular frequency.
There are several observations to support the second
interpretation. The fan is aft dominated, therefore one
would expect the cancellation pattern to be more
pronounced toward the forward angles where the relative
noise levels are more nearly equal in level. This is, in fact,
what is observed in the sideline data. An analytical study
of predicted sideline noise levels was performed which
considered a case for inlet and exhaust radiation for an aft
dominated fan. Again, a similar noise interference pattern
was observed for these analytical results. Finally, results
for another advanced fan model which was tested in a
large anechoic free jet facility showed similar interference
in the sideline results–in this case there was no nearby
tunnel wall to provide possible reflections. This
phenomenon will be further explored in a later section of
this report in which an acoustic barrier wall was placed
adjacent to the fan model and effectively blocked aft-
radiated noise from reaching the sideline microphone.

The 3BPF results of Fig. 19 show significant tone
reductions, which are now greatest toward the forward

angles. Different tone orders are associated with different
radiation mode structure, and therefore changes in the
directivity patterns are expected. In particular, acoustic
interaction modes which are just above cut-off tend to be
more forward radiating than more highly cut-on orders.
Tone reductions associated with simply moving the radial
stator downstream are nearly as great as those associated
with the swept + leaned stator (up to 18 dB). The swept
only stator was slightly less effective for tone removal at
forward radiation angles, but essentially equivalent to the
swept + leaned stator at the aft angles. The swept + leaned
stator was most effective in reducing broadband noise
levels at all measured sideline angles.

Figures 20 to 22 present corresponding acoustic results
for the fan operating at 84 percent design speed. The
spectral overlay of Fig. 20 is similar to the 50 percent
speed results of Fig. 17 in that the fundamental tone Is
essentially cut-off, and most overtone energy is associated
with the radial stator in the upstream position. The
“haystacking” nature of the swept + leaned spectra near
3BPF may be associated with flow disturbances caused by
the poorer aerodynamic performance of that stator.

Figure 21 shows sideline noise reductions for the
2BPF tone and broadband. The two modified stators were
essentially equivalent in terms of tonal noise reduction.
Tone reductions associated with the radial stator in the
downstream position were almost as good as those for the
modified stators except for downstream sideline angles
beyond 100º. Broadband noise reductions for the modified
stators were about 2 dB at upstream angles, increasing to
4 to 5 dB at further aft angles.

Tone reductions at 3BPF and 84 percent design speed
(Fig. 22) showed similar reductions for the modified and
further downstream radial stators. Broadband noise
reductions at 3BPF were greatest with the swept only
stator. The swept + leaned stator generated increased
broadband noise at sideline angles from 90 to 110º.

The fundamental rotor-stator interaction tone
remained cut-off at 100 percent design speed (Fig. 23).
However, higher-order tones are now present in the spectra
for the radial stator in the downstream position and for the
swept and leaned stator. Data were not taken at this speed
for the swept only stator due to aeromechanical avoidance
zones for this stator and fan speed. There is essentially no
interaction tone for the swept + leaned stator until 4BPF
(and higher) harmonics.

Fundamental (BPF) tone and broadband reductions
as a function of emission angle are shown in Fig. 24. The
interesting observation here is that, although cut-off, there
is a significant noise increase associated with the swept +
leaned stator. Again, the suspect cause is the lesser
aerodynamic performance of that stator.

The swept + leaned stator had much more effect than
the radial stator in the downstream position in reducing
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2BPF tone noise at 100 percent fan speed (Fig. 25).
However there was essentially no broadband reduction at
2BPF. A similar result was observed at 3BPF (Fig. 26).

All stator configurations produced significant tone
noise at the 110 percent overspeed condition. The
fundamental rotor-stator interaction tone is now weakly
cut-on and is evident for the radial stator at the two axial
locations and for the swept only stator. However, this tone
is not evident for the swept + leaned stator (Fig. 27). The
swept + leaned stator essentially eliminated the 2 and
3BPF tones from the spectra. The swept only stator was
marginally effective in reducing acoustic energy at these
tone orders.

The fundamental tone directivity results of Fig. 28
likewise shows significant noise reductions associated
with the swept + leaned stator, with somewhat increased
noise levels (relative to the radial stator in the forward
position) seen for the swept only and radial stator in the
downstream position. The broadband levels at BPF were
essentially unchanged by stator configuration, except for
small reductions at upstream angles with the swept +
leaned stator. A corresponding noise increase was
associated with the downstream radial stator at these
forward angles.

The directivity results at 2 and 3BPF (Figs. 29 and 30)
were somewhat similar, showing that the swept + leaned
stator was most effective in reducing tone and broadband
energy at this fan speed.

These results for the constant bandwidth tone and
broadband directivities are consistent with those presented
earlier in this report for the fictitious aircraft effective
perceived noise levels (Figs. 12 to 15). Stators correctly
redesigned with sweep + lean, or possibly sweep only
have been shown to significantly reduce both rotor-stator
interaction tone and broadband noise levels. However,
there is not a consistent story as to whether sweep + lean
or sweep only is the preferred modification. The relative
stator performance varied with fan speed. This story is
further complicated by the observation that the swept +
leaned stator showed greater aerodynamic losses than did
the other stators, suggesting that its acoustic performance,
likewise, was compromised. On the other hand, one could
infer that the expected acoustic benefits of a better designed
swept + leaned stator would be at least as good as were
shown herein, and perhaps better.

Data repeatability. The modified stator sets showed
significant reductions in fan tone levels, therefore there is
a need to validate the repeatability of these results. Repeat
data runs for two stator configurations were made to
quantify repeatability of the acoustic data. In each instance,
the second set of data represents a fan rebuild and was
acquired at a totally different test time. Thus, the following
comparisons are rather rigorous toward validating the
acoustic data. Successive data were taken for the swept +

leaned stator and for the radial stator in the downstream
axial position.

Sideline 1/3 octave directivities comparing repeat
data sets are shown in Figs. 31 and 32, respectively, for the
2500 and 20000 Hz frequency band. In each instance the
data repeatability is excellent.

Acoustic barrier wall. Noise levels for modern high-
bypass ratio subsonic turbofans tend to be aft-dominated.
That is, the highest flyover noise levels radiate from the
fan exit. Measurement of fan inlet sound radiation without
aft radiation contamination requires selective suppression
of the aft noise. An acoustic barrier was used in the NASA
Lewis 9×15 LSWT to effectively isolate the inlet noise
field from the fan exit noise. The acoustic barrier was
mounted on tracks on the tunnel floor and ceiling at a
sideline distance of 15 cm (6 in.) from the fan nacelle.
Tests were made with the wall leading edge at the fan inlet
highlight plane and 15 cm (6 in.) further aft. The wall
extended downstream essentially to the end of the treated
tunnel test section. The barrier was constructed in sections
which were joined upon installation. The barrier was of
wood frame construction, 8 cm (3 in.) thick, with typically
0.64 cm (0.25 in.) tempered fiberboard skins. An elliptical
leading edge was faired into the upstream barrier section.
The barrier sections extended floor to ceiling and had an
axial length of 61 cm (24 in.). The upstream section had
nominal full height by 46 cm (18 in.) axial length acoustic
treatment on the fan side of the barrier just downstream of
the leading edge. This treatment consisted of a bulk
absorber with a perforated metal skin. Inlet airflow
computations indicated that the presence of the barrier
wall should have a minimal effect on fan aerodynamic
performance. The barrier wall was shown to structurally
sound up to 0.20 Mach tunnel velocity.

Figure 33 is a photograph of the Allison fan in the
NASA Lewis 9×15 tunnel showing the acoustic barrier in
the upstream position. The sideline translating microphone
probe may be seen in the background. Figure 34 is a sketch
of the acoustic barrier wall installed in the 9×15 LSWT.

Figures 35 to 38 show 1/3 octave directivities for the
baseline fan with the radial stator in the upstream
position, and with the acoustic barrier wall installed at the
two axial locations (leading edge at fan inlet highlight
and 15 cm (6 in.) further aft). Figures 35 and 36 show
1/3 octave directivities for the fan operating at 50 percent
design speed. Figure 35 shows representative broadband
results at 2500 Hz. The presence of the barrier wall
significantly reduced fan aft noise levels, with somewhat
better aft suppression with the wall leading edge located at
the fan inlet highlight. Similar results are seen in Fig. 36
for the 3BPF tone. Maximum wall shielding at this fan
speed is about 20 dB. It is interesting to note that acoustic
modal structure from (presumably) inlet radiation is now
exposed due to the barrier wall shielding.
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Figures 37 and 38 show corresponding directivity
results for the fan operating at 100 percent design speed.
The barrier wall at both axial locations significantly reduced
aft-radiated broadband noise (Fig. 37). Likewise, the wall
was quite effective in shielding aft-radiated 4BPF tone
noise. Maximum shielding of this strong tone (Fig. 23)
was about 25 dB.

Figures 39 to 43 show the effect of the barrier wall on
the fan acoustic power. Figure 39 shows the overall sound
power level (OAPWL) calculated with 1/3 octave data
from 2000 to 20000 Hz. The data are for the translating
microphone probe for emission angles from 25 to 130º.
The presence of the barrier wall reduced the OAPWL from
about 4 dB at the lower fan speeds to over 10 dB at the
higher speeds. The fan noise directivity becomes
increasingly aft-dominated at higher speeds where the
barrier wall is shown to significantly reduce the measured
sound power. As expected, the barrier wall is slightly
more effective at its upstream location with the wall
leading edge at the fan inlet highlight.

Figures 40 and 41 show the corresponding fan OAPWL
for forward emission angles (25 to 61º) and downstream
angles (61 to 130º), respectively. The upstream OAPWL
results of Fig. 40 show essentially no barrier wall effect at
fan speeds below 85 percent design, where the fan noise
directivity begins to become more aft dominated. There is
some wall-induced noise reduction at higher fan speeds,
showing that dominant aft-radiated fan noise is present at
these upstream angles. There was essentially no difference
in barrier wall effectiveness for the two wall axial positions.

The barrier wall was quite effective in reducing the
downstream OAPWL (Fig. 41), with reductions typically
about 10 dB at lower fan speeds, increasing to 15 dB at the
higher speeds. The aft noise levels were sensitive to wall
location, being about 1.5 dB lower with the wall at the
forward axial location at the inlet highlight. However, the
wall axial location had no effect on noise reduction at 100
and 105 percent fan design speed where the noise is highly
aft-dominant.

The fan first overtone (2BPF) was cuton at all fan
speeds. Figure 42 shows the sound power levels (PWL)
for the 1/3 octave band containing this 2BPF tone as a
function of fan speed. Again, the data are for the translating
microphone probe over an emission angle range from 25
to 130º. These results are very similar to those seen for the
OAPWL in Fig. 39. Figure 43 shows the tone PWL
derived from 59 Hz narrowband data. The use of this finer
bandwidth facilitates better separation of the 2BPF tone
from other noise, such as broadband. These results are
similar to the 1/3 octave tone results of Fig. 42, although
the actual noise reductions due to the wall are somewhat
higher, being 15 or more dB at the highest fan speeds.

These acoustic results show that the barrier wall can
be a useful tool for isolating inlet radiation from an aft-

dominated fan in the LeRC 9×15 LSWT. This technique
should have application for investigating inlet acoustic
treatment effects or wherever it is desirable to eliminate aft
noise from the acoustic signature in the 9×15 anechoic
wind tunnel.

Concluding Remarks

An advanced high bypass ratio fan model was tested
in the NASA Lewis 9- by 15-Foot Low Speed Wind
Tunnel. The primary focus of this test was to quantify the
acoustic benefits and aerodynamic performance of sweep
and lean in stator vane design. Three stator sets were used
for this test series. A conventional radial stator was tested at
two rotor-stator axial spacings–a relatively close spacing
and a more open spacing, axially downstream. Additional
stator sets incorporating sweep + lean, and sweep only were
also tested. The hub and tip axial locations for the swept+
leaned, and swept only stators corresponded to the hub and
tip locations of the radial stators at the two axial spacings.
In theory, the use of about 30o of sweep and lean should
significantly reduce the impact of rotor wake–stator
interaction, thus resulting in lower rotor-stator noise levels.

The results clearly showed that incorporation of stator
sweep + lean, or sweep only can significantly reduce
rotor-stator tone levels. Tone levels for the modified
stators were significantly reduced beyond what was
achieved by simply relocating the conventional radial
stator to the downstream location. It is not clear if stator
sweep alone is typically adequate to achieve substantial
reductions in rotor-stator interaction noise, or if there are
significant additional benefits to be realized through
incorporation of both sweep + lean. In particular, the
aerodynamic performance of the swept + leaned stator
showed somewhat higher losses than that of the other
stators, suggesting that noise reductions associated with
this stator may be further improved through enhanced
aerodynamic design of a swept + leaned stator.

There is increasing interest in reducing broadband
noise levels of advanced subsonic turbofans. Noise
signatures of modern turbofan engines are increasingly
dominated by broadband noise rather than rotor-stator
tone noise. Increased axial spacing of a conventional
radial stator does not impact the fan broadband noise level,
except, perhaps, to increase the potential for broadband
noise generation through increased scrubbing surface, etc.
However, the results for the swept + leaned, and swept
only stators reported herein did show a significant reduction
(often on the order of 4 dB) of the broadband noise relative
to that generated with the radial stator.

Acoustic results scaled to a fictitious 2-engine aircraft
and flight path suggested that about 3 EPNdB could be
realized through incorporation of these modified stators –
a result which could represent a significant part of the
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current AST initiative goal of a 6 EPNdB reduction relative
to 1992 technology levels.

These results suggest that incorporation of some
combination of stator sweep and lean may significantly
reduce both tone and broadband noise levels for future
advanced turbofans. Additional research in this area should
further quantify the aeroacoustic performance of these
modified stators and give insights into methodology for
additional engine noise reduction.
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Rotor diameter .......................................................................... 55.9 cm (22 in.)
Rotor blade number ........................................................................................ 18
Rotor hub/tip ratio ....................................................................................... 0.30
Rotor aspect ratio ....................................................................................... 1.754
Stator vane number ...................................................................... (all modes) 42
Stator aspect ratio ...................................................................................... 3.073
Swept and leaned stator ....................................................... 30° lean/30° sweep
Swept only stator ............................................................................... 30° sweep
Design stage pressure ratio ........................................ 1.378 (1.45 tip–1.20 hub)
Design specific weight flow .............................. 210.4 kg/s/m2 (43.1 lbm/s/ft2)
Design corrected tangential tip speed .................................. 305 m/s (1000 ft/s)
Design tip relative Mach number .............................................................. 1.080

TABLE I.—ALLISON FAN DESIGN CHARACTERISTICS
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Figure 1.—Photograph of the Allison fan installed in the NASA Lewis 9x15 LSWT.

C-96-3638

(a)

(b)

Figure 2.—Sketch of the Allison fan with the baseline radial stator in the 
   forward and aft positions. (a) Upstream position. (b) Downstream position.
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(a)

(b)

Figure 3.—Sketch of the Allison fan with the swept + leaned and swept only 
   stator. (a) Swept only stator. (b) Swept + leaned stator.

Figure 4.—Photograph of the partially-assembled fan stage 
   showing the swept + leaned stator.

C-96-4824
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Figure 6.—Downstream view of the swept + leaned stator.

Figure 5.—Photograph of the partially-assembled fan 
   stage showing the swept-only stator.

C-96-4839

C-96-4831
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Figure 7.—Downstream view of the swept + leaned stator viewed through the rotor. The 
   fan direction of rotation is counter-clockwise.

C-96-4840

Figure 8.—NASA Lewis 9x15 Low Speed Anechoic Wind Tunnel.
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Figure 9.—Sketch of the Allison fan installed in the 9x15 wind tunnel anechoic test section. (All dimensions are in 
   cm (in.)).
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Figure 10.—Fan stage weight flow comparison for the radial 
   (baseline), swept + leaned, and swept only stator.
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Figure 11.—System thrust loss relative to baseline (radial) stator. 
   (Note: Vanes not optimized for performance - no core flow and 
   sharp corner flows. Swept only vanes partially optimized using 
   area ruling at the tip.)

50 55 60 65 70 75 80 85 90 95 100 105 110
Corrected design speed, percent

Figure 12.—Sideline EPNL for fictitious 2-engine aircraft and flight path. Maximum noise level for an 
   observer on a 610 m (2000 ft) sideline.
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Figure 13.—Flyover EPNL for fictitious 2-engine aircraft and flight path. Maximum noise level for an 
   observer 3.5 nautical miles from brake release in line with runway.
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Figure 14.—Sideline broadband EPNL for fictitious 2-engine aircraft and flight path. Maximum noise 
   level for an observer on a 610 m (2000 ft) sideline. 
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Figure 15.—Flyover broadband EPNL for fictitious 2-engine aircraft and flight path. Maximum noise 
   level for an observer 3.5 nautical miles from brake release in line with runway.
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Figure 16.—One-third octave directivities along a 224 cm (88 in.) sideline (50 percent fan design speed, 
   2BPF tone).
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Figure 17.—Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126° from inlet axis. 
   Fan is operating at 50 percent design speed.

Swept + leaned stator
Swept only stator
Radial stator in forward position
Radial stator in aft position

Figure 18.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (50 percent fan design 
   speed, SPL at 2BPF).
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Figure 20.—Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126° from inlet axis. 
   Fan is operating at 84 percent design speed.
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Figure 19.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (50 percent fan design 
   speed, SPL at 3BPF).
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Figure 21.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (84 percent fan design 
   speed, SPL at 2BPF).
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Figure 22.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (84 percent fan design 
   speed, SPL at 3BPF).
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Figure 23.—Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126° from inlet axis. 
   Fan is operating at 100 percent design speed.
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Figure 24.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (100 percent fan design 
   speed, SPL at 1BPF).
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Figure 25.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (100 percent fan design 
   speed, SPL at 2BPF).
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Figure 26.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (100 percent fan design 
   speed, SPL at 3BPF).
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Figure 27.—Constant bandwidth (59 Hz) spectra on a 224 cm (88 in.) sideline at 126° from inlet axis. 
   Fan is operating at 110 percent design speed.
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Figure 28.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (110 percent fan design 
   speed, SPL at 1BPF).
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Figure 29.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (110 percent fan design 
   speed, SPL at 2BPF).

Figure 30.—Sideline constant bandwidth (59 Hz) directivities showing noise reduction relative to base-
   line configuration with the radial stator in the forward (upstream) position (110 percent fan design 
   speed, SPL at 3BPF).
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Figure 31.—Data comparison for two builds of the same stator configuration showing data repeata- 
   bility. (1/3rd octave directivities at 2500 Hz, 84 percent design speed.)
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Figure 32.—Data comparison for two builds of the same stator configuration showing data repeata- 
   bility. (1/3rd octave directivities at 20 000 Hz, 84 percent design speed.)
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C-97-2115A

Figure 33.—Photograph of the Allison fan installed in the 9x15 LSWT with the acoustic 
   barrier wall in place. The wall is shown in its upstream position with the wall leading 
   edge at the fan inlet highlight.
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Figure 34.—Sketch of the acoustic barrier wall installed in the 9x15 LSWT.
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Figure 35.—Effect of acoustic barrier wall (50 percent design speed, broadband at 2500 Hz).
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Figure 36.—Effect of acoustic barrier wall (50 percent design speed, 3BPF at 5000 Hz).

Baseline, no wall
Wall at inlet leading edge highlight
Wall 15 cm (6 in.) downstream of inlet
  leading edge highlight

Baseline, no wall
Wall at inlet leading edge highlight
Wall 15 cm (6 in.) downstream of inlet
  leading edge highlight



NASA/TM—1998-208661       27

90

80

70

100

110

20 30 40 50 60 70 80 90 100 110 120 130 140
Emission angles along a 224 cm (88 in.) sideline

S
P

L,
 d

B

Figure 37.—Effect of acoustic barrier wall (100 percent design speed, broadband at 4000 Hz).
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Figure 38.—Effect of acoustic barrier wall (100 percent design speed, 4BPF at 12 500 Hz).
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Figure 39.—Effect of barrier wall on 1/3rd octave overall sound power level measured form 2000 to
   20 000 Hz. (Data from translating microphone probe.)
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Figure 40.—Effect of barrier wall on 1/3rd octave overall sound power level measured form 2000 to
   20 000 Hz for emission angles from 25 to 61°. (Data from translating microphone probe.)
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Figure 42.—Effect of barrier wall on 1/3rd octave 2BPF tone sound power level. (Data from translating 
   microphone probe.)
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Figure 41.—Effect of barrier wall on 1/3rd octave overall sound power level measured form 2000 to
   20 000 Hz for emission angles from 61 to 130°. (Data from translating microphone probe.)
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Figure 43.—Effect of barrier wall on 59 Hz narrowband 2BPF tone sound power level. (Data from 
   translating microphone probe.)
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